Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Topology

Subject Code: 4SC06TOC1/4SC06TOP1 Branch: B.Sc. (Mathematics)

Semester: 6 Date: 25/04/2019 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	Define: Subspace Topology.	1
	b)	Let <i>X</i> be any non-empty set, write co-finite topology on <i>X</i> .	1
	c)	Define:Open set.	1
	d)	Define: Exterior of set.	1
	e)	Define: Boundary point.	1
	f)	Define: T_1 space.	1
	g)	Define: Separated sets.	1
	h)	Let (X, τ) be T_1 topological space then $\{x\}$ is closed $\forall x \in X$. True or False.	1
	i)	Prove that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.	2
	j)	Let $f: R \to R$ with $f(x) = x$ then check f is continuous or not. Justify your	2
		answer.	
	k)	Let X be a topological space and $A \subset X$ then prove that A is closed if and only if	2
		$A^{'} \subset A$.	
Attempt	any f	Four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	a)	Let X be non-empty set. Let τ_1 and τ_2 be two topologies on X. Let $\tau = \tau_1 \cap \tau_2$.	6
	,	Then prove that τ is topology on X. Is $\tau_1 \cup \tau_2$ topology on X? Justify your	
		answer.	
	b)	Let $X = R$.	5
	/	Let $\tau = \{U \subset X \mid \text{for } x \in U \text{ there is } \epsilon > 0 \text{ such that } (x - \epsilon, x + \epsilon) \subset U \}$ then	
		prove that τ is topology on R	
	c)	Compare lower limit topology and usual topology on R.	3
Q-3	•	Attempt all questions	(14)
~ -	a)	Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$	6
		(i) Find all open sets	
		(ii) Find all closed sets	
		(iii) If $A = \{a, d\}$, find A° , \bar{A} .	
		(iv) If $B = \{b, c, d\}$ find B° , \overline{B}	
	b)		4
	U)	Let Y be a subspace of a topological space X then prove that a set A is closed in Y if and only if $A = V \cap C$ where C is closed in Y	4
		if and only if $A = Y \cap C$ where C is closed in X.	

	C)	Let (X, \mathcal{T}) be a topological space & A, B be two subsets of X then prove that, (i) If $A \subset B$ then $A' \subset B'$.	4
		(ii) $(A \cap B)' \subseteq A' \cap B'$.	
		$(iii) A' \cup B' = (A \cup B)'.$	
Q-4		Attempt all questions	(14)
	a)	Let X and Y be a topological space and $f: X \to Y$, then prove that following are	6
		equivalent	
		(i) f is continuous.	
		(ii) For every subset A of X then $f(\bar{A}) \subset \overline{f(A)}$.	
		(iii) For every close set B in Y then $f^{-1}(B)$ is closed in X.	
	b)	Let X be a topological space and A be a subset of X. Then prove that $\overline{A} = A \cup A'$.	6
	c)	Let (X, τ) be a topological space & A, B be two subsets of X then prove that	2
		$ext(A \cup B) = ext A \cap ext B.$	
Q-5		Attempt all questions	(14)
	a)	Prove that homeomorphism is an equivalence relation in the collection of	6
		topological spaces.	
	b)	Let (X, τ) be disconnected topological space and τ' is finer than τ . Prove that	4
		(X, τ') is disconnected.	
	c)	Let (X, τ) be a topological space &A, B be two open subsets of X then prove that	4
		$A \& B$ are separated if and only if $A \cap B = \phi$.	
Q-6		Attempt all questions	(14)
	a)	Let X be a topological space. Then X is disconnected if and only if there exists a	6
		non-empty subset of X which is both open and closed in X.	
	b)	Prove that every subspace of T_1 space is T_1 space.	5
	c)	Prove that indiscrete topology is not T_0 space.	3
Q-7		Attempt all questions	(14)
	a)	State and prove Heine Borel theorem.	10
	b)	Let <i>X</i> be co countable topological space then <i>X</i> is compact if and only if <i>X</i> is	4
		finite.	
Q-8		Attempt all questions	(14)
	a)	Prove that continuous image of connected space is connected.	5
	b)	Prove that continuous image of compact space is compact.	5
	c)	Prove that R with usual topology is T_1 space.	4

